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The stability of the Hagen-Poiseuille flow of a Newtonian fluid in a tube of radius R 
surrounded by an incompressible viscoelastic medium of radius R < Y < HR is 
analysed in the high Reynolds number regime. The dimensionless numbers that affect 
the fluid flow are the Reynolds number Re = ( p  VR/r) ,  the ratio of the viscosities of the 
wall and fluid vr = (rs /q) ,  the ratio of radii H and the dimensionless velocity 
r = (pV/2/G)’/2. Here p is the density of the fluid, G is the coefficient of elasticity of the 
wall and Vis the maximum fluid velocity at the centre of the tube. In the high Reynolds 
number regime, an asymptotic expansion in the small parameter 6 = ( I /Re)  is 
employed. In the leading approximation, the viscous effects are neglected and there is 
a balance between the inertial stresses in the fluid and the elastic stresses in the medium. 
There are multiple solutions for the leading-order growth rate do), all of which are 
imaginary, indicating that the fluctuations are neutrally stable, since there is no viscous 
dissipation of energy or transfer of energy from the mean flow to the fluctuations due 
to the Reynolds stress. 

There is an O(el”) correction to the growth rate, d’), due to the presence of a wall 
layer of thickness eli2R where the viscous stresses are O(e1/2) smaller than the inertial 
stresses. An energy balance analysis indicates that the transfer of energy from the mean 
flow to the fluctuations due to the Reynolds stress in the wall layer is exactly cancelled 
by an opposite transfer of equal magnitude due to the deformation work done at the 
interface, and there is no net transfer from the mean flow to the fluctuations. 
Consequently, the fluctuations are stabilized by the viscous dissipation in the wall 
layer, and the real part of s(’) is negative. However, there are certain values of r and 
wavenumber k where s(l) = 0. At these points, the wail layer amplitude becomes zero 
because the tangential velocity boundary condition is identically satisfied by the 
inviscid flow solution. The real part of the O(e) correction to the growth rate s@) turns 
out to be negative at these points, indicating a small stabilizing effect due to the 
dissipation in the bulk of the fluid and the wall material. It is found that the minimum 
value of s(’) increases cc ( H -  for ( H -  1)  4 1 (thickness of wall much less than the 
tube radius), and decreases cc H-4 for H 9 1. The damping rate for the inviscid modes 
is smaller than that for the viscous wall and centre modes in a rigid tube, which have 
been determined previously using a singular perturbation analysis. Therefore, these are 
the most unstable modes in the flow through a flexible tube. 

1. Introduction 
Fluid flow in a tube with flexible walls is observed in biological systems, such as the 

flow of blood and other fluids in the body, and in industrial applications such as hollow 
fibre reactors and membrane bioreactors. Experimental evidence suggests that the 
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characteristics of the fluid flow in a flexible tube could be very different from those in 
a rigid tube, since the dynamics of the wall strongly influences the flow field. Krindel 
& Silberberg (1979) studied the flow of a Newtonian fluid in a gel-walled tube, and 
observed that the transition Reynolds number and the drag law are very different from 
those for a rigid tube. Hansen & Hunston (1974) observed the presence of waves on the 
surface of a disk coated with an elastic material which was spun in a fluid, and 
Silberberg (1987) showed that the transition Reynolds number for the appearance of 
waves was very different from that for the transition in flow past flat plates. In this 
paper, we study the stability of the fluid in a flexible tube at high Reynolds number. 
The low Reynolds number flow in this geometry was analysed in an earlier paper 
(Kumaran 1995). A good understanding of the effect of the wall dynamics on the fluid 
flow would be useful in predicting the transition to turbulence and the drag force in 
biological flows, and the mass and heat transfer characteristics of these systems. 

The flow of a Newtonian fluid through plane channels has been extensively studied. 
In the case of a rigid-walled channel, the flow is stable in the absence of inertia because 
the equations of motion do not explicitly depend on time in this case. In the high 
Reynolds number limit, one might be inclined to neglect the viscous terms in the 
momentum equation, but there is a theorem due to Rayleigh (see Lin 1966) which 
states that neutral or unstable fluctuations can exist in an inviscid parallel flow only if 
the velocity profile has a point of inflexion. Since plane Couette and Poiseuille flows do 
not have points of inflexion, the inviscid analysis proves inconclusive and it is necessary 
to include the effect of viscosity. High Reynolds number analyses including the effect 
of viscosity were carried out by Tollmien (1929), Schlichting (1933), Wasow (1953), Lin 
1945a-c) and others (for a review, see Lin 1966). These studies showed that there are 
solutions of the complete Navier-Stokes equations which do not reduce to the 
solutions of the inviscid equations because the viscous stresses are important in an 
internal critical layer of thickness O(Re-1’3) smaller than the thickness of the channel, 
where Re is the Reynolds number. Owing to the presence of this critical layer, 
sophisticated asymptotic techniques are necessary for obtaining the stability 
characteristics. The asymptotic analysis indicates, and numerical computations of the 
linearized Navier-Stokes equations confirm, that a Poiseuille flow through a channel 
becomes unstable at a Reynolds number of about 5800, and this instability is called the 
Tollmien-Schlichting instability. 

In a channel with flexible walls, the dynamics of the walls could affect the fluid flow, 
and there is the possibility of an instability at low Reynolds number. The low Reynolds 
number Couette flow adjacent to a gel was studied by Kumaran, Fredrickson & Pincus 
(1994), who found an instability even in the absence of inertia when the velocity was 
increased beyond a critical value. Instabilities are not usually encountered in the 
absence of inertia because the equations of motion are not explicitly time dependent, 
but in the analysis of Kumaran et al. (1994) the time dependence entered through the 
elastic terms in the equations for the wall dynamics. This instability is driven by a 
discontinuity in the strain rate across the interface, which results in the transport of 
energy from the mean flow to the fluctuations via the deformation work done by the 
mean flow at the interface. A similar instability was observed in the flow through a 
flexible tube at low Reynolds number which was subsequently analysed by the present 
author (Kumaran 1995). 

At high Reynolds number, the Tollmien-Schlichting instability is modified owing to 
the flexibility of the wall. Moreover, the Rayleigh theorem does not apply in this case 
because a normal velocity is permitted at the wall, and there are additional types of 
instabilities that could exist in the absence of viscosity. Benjamin (1959, 1963) and 
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Landahl (1962) used a simple extension of the linear stability theory of Tollmien 
(1929), Schlichting (1933) and Lin (1945~-c), and classified the instabilities into three 
types based on the effect of dissipation on the growth of the waves. Class A refers to 
Tollmien-Schlichting instabilities modified by the flexibility of the wall, and these are 
destabilized by dissipation in the wall. Class B instabilities are surface resonance type 
instabilities which travel close to the free wave speed of the surface, and these are 
damped by the viscous dissipation. Both Class A and B waves can exist only in a 
viscous fluid, while the Class C waves, which are not affected by dissipation in the wall, 
can exist in an inviscid flow and are similar to the Kelvin-Helmholtz or aerodynamic 
flutter instability. More recent linear stability analyses (Carpenter & Garrad 1985, 
1986) have numerically solved the complete Navier-Stokes equations to determine the 
onset of instability. This involves recasting the equations of motion into a single 
fourth-order Orr-Sommerfeld equation, and determining its eigenvalues numerically. 
This task is complicated by the stiffness of the Orr-Sommerfeld equations, and 
sophisticated numerical techniques are required to overcome the stiffness problems. 
Carpenter & Garrad (1985, 1986) found it convenient to use a two-fold classification 
- the Tollmien-Schlichting instability which exists only in the presence of fluid 
viscosity, and the flow-induced surface instability which can exist in an inviscid flow. 
The preceding studies concluded that the flexibility of the wall usually stabilizes the 
flow in the boundary layer and increases the Reynolds number at which transition to 
turbulence occurs ; this is in qualitative agreement with experimental results (see, for 
example, Riley, Gad el Hak & Metcalfe 1988; Carpenter 1990). 

Experimental studies on the flow past a flexible surface were conducted by Hansen 
& Hunston (1974, 1983). Their apparatus consisted of a disk coated with an elastomer 
made of polyvinyl chloride plastic01 suspended in a tank of a Newtonian fluid (usually 
water). The disk was rotated with a controlled angular velocity, and the torque 
required was measured. In addition, the surface of the disk was also visually observed. 
They found that when the angular velocity was increased beyond a critical value, a 
standing wave structure appeared on the surface, and the drag force on the disk was 
greater than that on an identical disk without the compliant surface. Silberberg (1987) 
reported that the critical value of the angular velocity was proportional to 
(G~~p/4H7')~' ' ,  where G is the shear modulus of the material, p and 7 are the density 
and viscosity of the fluid, and a and Hare  the radius of the disk and the thickness of 
the compliant surface respectively. This implies that the elastic nature of the surface 
does not just modify the instability in the flow past a rigid surface, but induces an 
instability which is absent in the flow past a rigid surface. 

The stability of the flow through a rigid tube is qualitatively different from the flow 
in a plane channel, because there is no critical layer for axisymmetric perturbations. As 
a result, there is no possibility of unstable modes in the high Reynolds number regime. 
In fact, the inviscid equations for the temporal stability in an infinite tube have no 
solutions, and the asymptotic analysis of Gill (1965) in the high Reynolds number 
regime considered the spatial stability problem, where the evolution of the spatial 
growth of a disturbance is studied. The inviscid flow solutions were found to be 
strongly damped, and of little interest. However, the asymptotic studies of Pekeris 
(1948), Corcos & Sellars (1959) and Gill (1965) revealed that there are two types of 
singular perturbation solutions for the inviscid equations, where the vorticity is 
confined to thin regions near the centre of the tube and at the wall. 

There have been many linear stability analyses of the flow in a tube at finite Reynolds 
number. The majority (Davey & Drazin 1969; Garg & Rouleau 1972; Salwen & 
Grosch 1972) have reported that the flow is stable to small disturbances at all Reynolds 
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numbers. Davey & Drazin’s numerical result was found to be in good agreement with 
the high Reynolds number asymptotic solutions. Graebel’s (1970) asymptotic analysis 
gave a critical Reynolds number Re’/3 = 3, but the author concluded that this critical 
Reynolds number is too small to match the experimental results. As a consequence, 
there appears to be a consensus that the flow in a rigid tube is stable to small 
perturbations, but there may be an instability to perturbations of finite amplitude. This 
conclusion has been reinforced by experimental evidence which indicates that the flow 
can be maintained in the laminar regime at Reynolds numbers much higher than the 
critical value of 2300 if adequate precautions are taken to prevent fluctuations in the 
system. In experiments, the transition to turbulence is not due to growth of waves of 
a specific wavelength, but rather to the creation of local intermittent disturbances in the 
entrance region and at the surface of the pipe. Wygnanski & Champagne (1973) 
identified two mechanisms of instability - the turbulent slugs which are caused by 
small disturbances in the wall layer and appear at a Reynolds number of about 3200, 
and the turbulent puff which is observed at the entrance of the pipe at a Reynolds 
number of about 2300. For a detailed discussion of the transition to turbulence, see 
Sreenivasan & Ramshankar (1 986). 

The flow near a flexible surface is very different from the flow near a rigid surface. 
The Rayleigh theorem is not valid for the flow in a flexible tube because a non-zero 
normal velocity is permitted at the wall, and there are non-trivial solutions for the 
temporal stability problem for an inviscid flow in the flexible case. The low Reynolds 
number analysis (Kumaran 1995) has revealed the possibility of unstable fluctuations 
when the fluid velocity is increased beyond a critical value, and it would be of interest 
to carry out a similar analysis in the high Reynolds number limit. In the present paper, 
we study the stability of the flow in a flexible tube at high Reynolds number using an 
asymptotic analysis. 

As already mentioned, the earlier asymptotic studies of the flow through a rigid pipe 
have concentrated on the singular perturbation problem, which involves the presence 
of viscous layers at the centre or at the wall of the tube. This is because there are no 
non-trivial solutions for the inviscid flow through a rigid tube at high Reynolds 
number. In the case of a flexible tube, however, there are non-trivial solutions because 
a normal velocity is permitted at the wall. Therefore, it is possible to use a regular 
perturbation analysis to obtain the growth rate of the inviscid modes. In $4, the growth 
rates of the inviscid modes analysed here are compared with the growth rates of viscous 
modes in a rigid tube obtained previously by a singular perturbation analysis. The 
present asymptotic analysis is also different from the triple-deck theory used by 
Carpenter & Gajjar (1990) for the boundary layer flow past a flexible surface. In both 
analyses, the viscous correction to the leading-order inviscid flow is significant in a wall 
layer of thickness O(Re-li2) at the surface, where Re is the Reynolds number based on 
the mean velocity and the tube radius or boundary layer thickness. However, in the 
case of a plane surface, the Rayleigh equation for the stream function in an inviscid 
flow contains a singular point when the fluid velocity is equal to the wave velocity of 
the perturbations (see, for example, Drazin & Reid 1981). Around this point, it is 
necessary to include the viscous effects in the leading-order theory, and there is an 
internal viscous layer of thickness O(RepIi3) around this point. In the cylindrical 
geometry, however, there is no singularity in the Rayleigh equation for axisymmetric 
modes, and so it is not necessary to include the inner shear layer in the analysis. 

The stability of the flow in a flexible tube is determined using a normal mode analysis 
in $2. This is a temporal stability analysis, where perturbations in the form of Fourier 
modes are imposed on the base flow, and their temporal growth rate is determined. 
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This type of analysis has been commonly used in the classical hydrodynamic stability 
problems. In the study of inviscid shear flows, the initial value analysis (spatial stability 
analysis) has also been used, where a disturbance in the form of a localized wave packet 
in space is imposed on the mean flow, and the spatial growth rate of the perturbations 
is determined. The relationship between the two techniques is given in Drazin & Reid 
(1981, Chap. 6). When the perturbations are neutrally stable, the spatial and temporal 
modes coincide because both the spatial and temporal growth rates are imaginary. The 
normal mode problem is simpler than the initial value problem, and it is possible to 
obtain analytical results for the growth rate in the former case, whereas the latter 
involves extensive computation. Since the neutral stability curves are of interest in the 
present study, it is more convenient to use the normal mode analysis. 

The fluid is an incompressible Newtonian fluid, and the wall of the tube is modelled 
as an incompressible viscoelastic medium in which the stress has an elastic component 
which depends on the strain field and a viscous component which is proportional to the 
strain rate. It is of interest to determine the relative magnitudes of the fluid and wall 
viscosity in a typical application. The time scale for oscillations in the high Reynolds 
number regime is t = ( P R ~ / G ) ~ / ~ ,  where p is the density of the fluid, R is the radius of 
the tube and G is the modulus of elasticity. For typical values of G = 100 Nm-’ for 
polymer gels, p = 1000 kg m-3 for water and R = lou3 m in biological systems such as 
blood vessels, the time scale is 3 x s. If the imaginary part of the shear modulus 
Gi is 0.03 times the real part (as is typical for elastic materials), then the solid viscosity 
qs = G, t / 3  is 3 x This is about three times the viscosity of water at room 
temperature. Therefore, in the present analysis we assume that the viscosities of the 
solid and fluid are of the same magnitude in the perturbation analysis. 

The viscous stresses in the fluid are neglected in the leading-order analysis, and there 
is a balance between the inertial stresses in the fluid and the elastic stresses in the wall. 
Since there is no dissipation of energy in the leading approximation, the leading-order 
growth rate do) of the perturbations is imaginary. The viscous stresses are important 
in a wall layer of thickness O(Rep1l2) smaller than the tube radius, and these cause an 
O(Re-”2) correction dl) to the growth rate. The real part of the s(’) turns out to be 
negative in the absence of flow, indicating that the perturbations are stable. However, 
it is found that s(’) = 0 for specific values of the fluid velocity and the wavenumber. At 
these parameter values, the stability of the flow depends on the O(Re-l) correction to 
the growth rate d2). The real part of d2) turns out to be negative, indicating a small 
stabilizing effect due to the dissipation in the wall and the outer flow. 

The reasons for the unusual behaviour of s(’) are further examined using an energy 
balance analysis in 93. This involves identifying the mechanisms for the transport of 
energy from the mean flow to the fluctuations and the dissipation of energy. The results 
of the energy balance analysis are in agreement with those of the linear stability 
analysis, and provide some physical insight into the energy transfer processes in the 
flow. The main conclusions are briefly summarized in §4. 
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2. Linear stability analysis 
The system consists of a Newtonian fluid of density p and viscosity y flowing through 

a tube of radius R which is surrounded by an incompressible viscoelastic medium of 
density p, viscosity ys and coefficient of elasticity G in the annular space R < r < H R  
as shown in figure 1. In the high Reynolds number limit, it is convenient to scale all 
lengths by the radius of the tube R, the time coordinate by (pR2/G)’” and all velocities 
by ( G / P ) ~ / ~ .  The dimensionless mean flow velocity profile is a Hagen-Poiseuille flow : 

(2.1) 
where the dimensionless velocity r = (pV2/G)ll2, and Yis the maximum fluid velocity. 
The governing equations for the fluid are the Navier-Stokes mass and momentum 
equations : 

B = r( 1 - r2),  

ai V i  = 0, (2.2) 

(2.3) a, vi + vj aj vi = - aip + a; vi, 
where a, = @/at )  and = (a/ax,), Re = (pVR/?) is the Reynolds number, the pressure 
in the fluid is non-dimensionalized by the shear modulus G and E = (1/Re) is a small 
parameter in the limit Re p 1. The stress in the fluid is 

rij = -pSij + &(ai u j  + a, vi). (2.4) 
The wall of the tube is modelled using the dynamical equations for an incompressible 

elastic material (Landau & Lifshitz 1989) modified to include a viscous stress. These 
equations have been used earlier for polymer gels (Harden, Pleiner & Pincus 1991; 
Kumaran 1993; Kumaran et al. 1994), and for the study of the stability of flow through 
a flexible tube at low Reynolds number (Kumaran 1995). The dynamics of the wall is 
described by a displacement field ui, which represents the displacement of the material 
points from their steady-state positions due to the stresses at the surface. For an 
incompressible material, the displacement field ui satisfies the solenoidal condition 

aiui  = 0, ( 2 . 5 )  
while the momentum conservation equation is 

a; ui = - aip + a; ui + a; vi. 
The left-hand side represents the rate of change of momentum in a volume element, 
while the three terms on the right-hand side are the divergence of the pressure, the 
divergence of an elastic stress due to the strain in the material and the divergence of a 
viscous stress due to the strain rate. In the latter, the velocity is given by vi = a, ui, and 
y r  = (ys/y) is the ratio of the viscosity of the wall material and the fluid. The stress in 
the wall is given by 

The boundary conditions for the fluid velocity field at the centre of the tube are the 
symmetry conditions v, = 0 and a, u, = 0, while the wall material is fixed at r = H 
where the displacement field satisfies u, = 0 and u, = 0. The appropriate boundary 
conditions at the interface between the fluid and the wall are the continuity of velocity 
and stress: 

ui = a, ui, C T , ~  = ri j .  (2.8) 
In the linear stability analysis, small perturbations in the form of Fourier modes are 

(2.9) 

imposed on the fluid velocity field and the wall displacement field: 

vi = fii exp (ikx+ st), ui = Ci exp (ikx + st), 
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where k is the wavenumber and s is the growth rate of the perturbations. Upon 
inserting the above perturbations into the conservation equations for the fluid velocity 
field ((2.2) and (2.3)), the following equations for the eigenfunctions Ei are obtained for 
axisymmetric perturbations : 

(2.10) 
(2.11) 
(2.12) 

(a, + r-l) v", + ikv", = 0, 
[S + Tik( 1 - P)] 6, = - a,p + er(ap + r-l a, - r-' - k2)  f i r ,  

[S + Tik( 1 - r2)] v", - 2Trv", = - ikp + &(a: + r-l a, - k2) v",, 
where j? is the eigenfunction for the pressure. 

The equations for the eigenfunctions tii can be obtained by inserting the equation for 
the perturbation to the displacement field (2.9) into the conservation equations (2.5) 
and-(2.6) : 

(a, + r-') ii, + ikti, = 0, (2.13) 
~ i i ,  = - a,p + [I + G r Y ,  SI (a; + Y-1 a, - Y-2 - k2) ti,, (2.14) 

s2G, = -ikp+[l + e r r , ~ ] ( a , 2 + r - ~ a , - k ~ ) i i , .  (2.15) 

The boundary conditions at the centre of the tube (Y = 0) are the symmetry conditions 
(a, = 0 and a, 5, = 0), and the boundary conditions at the surface Y = H are the zero 
displacement conditions (6, = 0 and ii, = 0). At the interface r = 1, the continuity of 
velocity and stress conditions are 

(2.16) 
(2.17) 

The second term on the left-hand side of the boundary condition for the tangential 
velocity (2.16) represents the variation in the mean velocity at the surface due to the 
surface displacement. This is caused by the discontinuity in the strain rate across the 
surface in the base state. 

In the high Reynolds number limit, the viscous terms in the momentum equations 
for the fluid ((2.11) and (2.12)) are O(e) smaller than the inertial terms, and an 
asymptotic analysis in the small parameter e is suitable. The fluid velocity field can be 
divided into two regions - an outer flow velocity UIoi which is inviscid in the leading- 
order approximation, and a wall layer velocity f i W i  where the viscous stresses are 

(2.18) 
important : 

vi = voi+vwi.  

Further analysis indicates that the first correction to the velocity and displacement 
fields are O(eliZ) smaller than the leading-order terms, and so these quantities are 
expanded in an asymptotic series as follows: 

- - -  

f iOi  = 62' + p v " $ )  + . . . , Gi = U"i0) + pq) + . . . , s = s(0) + el/Zs(1) + . . . . (2.9) 
In the leading-order approximation for the outer velocity Coi, the viscous terms in the 
fluid momentum conservation equations can be neglected, and the mass and 
momentum equations ((2. lo), (2.11) and (2.12)) can be combined to give the following 
equation for fig) : 

[do) + Tik( 1 - r2)] (a," + r-l a, - r-2 - k2) 5:) = 0. (2.20) 

The eigenfunctions for the fluid velocity field 
easily obtained by solving the above equation and using (2.10) and (2.12): 

and v"g and pressure field p ( O )  can be 

fib",' = A, zl(kr), (2.21) 
v"g = iAlzo(kr), (2.22) 

pC0) = ( A J k )  [ - (do) + Tik( 1 - r2)) zO(kr) - 2i~r1~(kr)], (2.23) 
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where 1, and Zl are modified Bessel functions, and A ,  is a constant that has to be 
determined from the boundary conditions. In the above solutions, the coefficients of 
the solutions proportional to KO and K, have been set to zero, as required by the 
symmetry conditions at Y = 0. 

The equation for the first-order correction to the velocity field, analogous to (2.20), 
is 

It can be easily verified that the solution for the first correction to the velocity field is 
identical to the leading-order velocity field, and therefore we can set fig) = 0 without 
loss of generality. With this, the solution for the first correction to the velocity and 
pressure fields are 

6%) = 0, fifi = 0, (2.25) 

$1) = - (8  (1) / k )  4kw. (2.26) 

There is a wall layer of thickness (cl/'R) at the interface, and the equation for the 
velocity profile in the wall layer can be obtained by rescaling the radial coordinate 
( 1  - r )  = eliZy in the momentum equations (2.10), (2.1 1) and (2.12). In turns out that 
the leading-order wall layer velocities, fig: and fig:, are sufficient for the present 
analysis, and therefore we can remove the superscript (0) for the wall layer velocity. 
The modified momentum conservation equations, correct to leading order in small C, 

are 
- e-liz ay fi,, + ikfiw, = 0, (2.27) 

-C-1/2a,p-t(-s(o)++ra~)a,, = 0, (2.28) 

- ikp" + (- do) + +a;) fi,, = 0. (2.29) 

The above equations can easily be solved to obtain the following velocity profile in the 
wall layer: 

Cwz = exp ( - y ( ~ ( O ) / r ) l ' ~ ) ,  (2.30) 

f i w r  = - Ai ik(eT/s(O))li2 exp ( -y(s(')/T)l''), (2.3 1) 

where the amplitude A,  is determined from the boundary condition for the tangential 
velocity. The above solutions are consistent for both upstream and downstream 
travelling waves, because if do) is expressed as Is(O)I exp (ie), where the 6' is chosen such 
that 0 < 8 < rt for upstream waves and -rt < 8 < 0 for downstream waves, then the 
real part of is always positive. For future reference, the shear stress in the wall 
layer is 

?w5r = e1/2Ai(T~(o))1/z exp ( - y ( ~ ( O ) / r ) l ' ~ ) .  (2.32) 

The eigenfunctions for the displacement field in the wall material are determined 
next. The leading-order eigenfunctions for the displacement field, obtained by solving 
(2.13), (2.14) and (2.15) are 

."?' = B, K,(yr) + B, K,(kr) + B, Z,(yr) + B4 Z,(kr), (2.33) 

(2.34) 

$0) = B,(y2/k - k)  KO(W - B,(y2/k - k)  &W, (2.35) 

where y = [k2+(s(o))2]112 and KO and K, are modified Bessel functions. The constants, 
B,, B,, B, and B, are determined from the zero displacement conditions at r = H ,  and 
the velocity and stress conditions at the interface ((2.16) and (2.17)). The first 

."(a) = - y / k )  Ko(yr) - iB2 Ko(kr) + (iB, y / k )  I,,(yr) + iB4 &,(W, 
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corrections to the displacement fields, 6:) and z12), evaluated from (2.13), (2.14) and 

(2.36) 
(2.15) are Cp) = - Bl(s(o)s(l)r/y) Ko(yr) + B,(s(o)s(l)r/y) Zo(yr), 

Is(o)s(l) ls(o)s(l) 

6:) = -B,  (l) Yk [2Ko(yr)- y r K l ( y r ) ] + B , ( ~ ) [ 2 Z o ( y r ) + y r I l ( y r ) ] .  Yk (2.37) 

The leading-order velocity and stress boundary conditions at the interface r = 1 

(2.38) 
(2.39) 

The normal velocity in the wall layer f i W r  does not enter the leading-order boundary 
conditions because it  is 0 ( c l i 2 )  smaller than the tangential velocity u",,. The shear stress 
in the outer flow f z r  (2.4) is O(e) smaller than the shear stress in the wall c7xr (2.7), and 
so the former has been neglected in the stress balance condition (2.39). Similarly, it can 
easily be verified that the normal and shear stresses in the wall layer, f w r r  and 7,,,, are 
O(e) and O(e'") smaller than the respective stresses in the wall material, and so these 
are also neglected in the stress balance conditions. The velocity and pressure fields in 
the fluid, (2.21), (2.22) and (2.23), the velocity in the wall layer, (2.30) and (2.31), and 
the displacement and pressure fields in the wall, (2.33), (2.34) and (2.35), are inserted 
into the boundary conditions (2.38) and (2.39) and solved to obtain the characteristic 
equation for the growth rate do). From (2.38) and (2.39), it can be seen that boundary 
conditions for the normal velocity, u"g), and normal and shear stresses, t?f and eg, are 
independent of the wall layer velocity v",,, so these three can be solved independently 
to determine the growth rate do). With this simplification, the characteristic matrix for 
the leading-order displacement field is the following 5 x 5 matrix : 

((2.16) and (2.17)) are 
v"lp,' = s(o)$N, i;b",' + cwz - 2 r u y  = s ( o ) u i o ) ,  

? ( O )  or? = g r r  - ( 0 )  9 &O) xr  = 0 . 

s'o'Kl(Y) do) K,(k) 

- Y[Ko(Y) + K,(Y)l -yz Ko(4 - kK,(k) Y[Io(Y) + I,(Y)l 
i(y2 + k2)  

k 

2ikZl (k) 0 
Il(kH) 0 
iIo(kH) 0 

. (2.40) 

In the above matrix, the first row represents the normal velocity boundary condition 
(2.38), the second and third rows are the normal and tangential stress conditions (2.39), 
and the fourth and fifth rows are a consequence of the zero displacement conditions 
at r = H. The growth rate do) is determined by solving the characteristic equation 
Det(/M) = 0, and the amplitude of the wall layer velocity, Ai, can then be determined 
from the boundary condition for the tangential velocity v"Ip,' (2.38). 

The characteristic equation admits multiple solutions for the growth rate do), all of 
which are imaginary, indicating that the perturbations are neutrally stable in the 
leading-order approximation. In the absence of fluid flow, the frequency w ,  which is the 
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FIGURE 2. Leading-order frequency w as a function of the wavenumber k at r = 0 for H = 2 .  
0, First harmonic; A, second harmonic; 0, third harmonic. 
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FIGURE 3. The frequency w as a function of H in the limit k+O. 0, First harmonic; 
A, second harmonic; 0, third harmonic. 

imaginary part of do), has solutions that are equal in magnitude and opposite in sign. 
The magnitudes of the first three harmonics for w as a function of the wavenumber k 
for H = 2 are shown in figure 2. The frequency has a finite value in the limit k + 0, and 
increases proportional to k for k 9 1. The limiting values of w for k = 0 are shown as 
a function of H in figure 3. In the limit ( H -  1)  < 1, which corresponds to a planar 
viscoelastic medium in contact with an infinite fluid, the frequency has an infinite 
number of solutions [(7~/2)(H- l)-'], [(37c/2) ( H -  l)-'], . . . . These values are consistent 
with those reported earlier (Kumaran 1993) for the frequencies of the surface modes 
on a planar viscoelastic medium of finite thickness, and serve as a consistency check for 
the present calculation. In the limit H % 1, the value of the lowest harmonic decays 
proportional to H-', while the higher harmonics decay as H-'. 

It is useful to consider the physical reason for the presence of an infinite number of 
solutions for the frequency. Multiple harmonics are usually associated with an 
oscillatory variation in the eigenfunction for the velocity or displacement fields. From 
(2.21) and (2.22) for the outer velocity field, it can be seen that the outer velocity 
increases monotonically from the centre to the wall of the tube. This is due to the 



Stability of the f low of a fluid through a $exible tube 127 

9 

6 
0 

3 

0 r 
0 2 4 6 8 10 

k 

FIGURE 4. Effect of variation in r on the frequency w of the fluctuations for the first harmonic for 
H = 2 .  The solid lines represent downstream travelling waves (w < 0), and the broken lines represent 
upstream travelling waves (w > 0). 0, r= 0;  A, r= 2 ;  0, r= 5 ;  0, r= 10. 

absence of elasticity in the fluid, which is necessary to sustain oscillatory behaviour. 
The multiple harmonics are due to the oscillatory variation in the displacement field as 
a function of radius in (2.33) and (2.34), and the number of oscillations increases by 
one for each successively higher harmonic. Therefore, the presence of multiple 
harmonics is essentially due to the wall dynamics. Multiple harmonics could be present 
even in the absence of fluid, as illustrated in Kumaran (1993). 

The modification of the frequency due to a fluid flow for the first harmonic is shown 
in figure 4; the higher harmonics exhibit similar behaviour. An increase in the fluid 
velocity tends to increase the frequency of waves with w < 0 (downstream travelling 
waves), and decrease the frequency of waves with w > 0 (upstream travelling waves). 

The leading-order calculation has proved inconclusive in determining the stability of 
the perturbations, and it is now necessary to determine the O ( F 2 )  correction to the 
growth rate s(') by solving the O ( C ~ / ~ )  correction to the characteristic matrix M. For 
this, it is necessary to determine the O ( E ~ / ~ )  correction to the displacement field in the 
wall material (2.36) and (2.37), and the corresponding stresses, and the wall layer 
velocity (2.30) and (2.31) and the corresponding fluid stresses. The calculation is fairly 
simple but tedious, and the details are not given here. It is sufficient to note that the 
magnitudes of the real and imaginary parts of dl) are equal. This is because the 
inhomogeneous terms in the equations for the O(eliZ) velocity and stress conditions are 
the normal velocity and shear stress at the surface, which are proportional to 1/(do))'/' 
and (do))'/' respectively (see (2.31) and (2.32)). Also, the first correction to the 
displacement field Gp) and Gil) ((2.36) and (2.37)) is independent of the viscosity of the 
wall material T?, and therefore s(') is also independent of 7,. 

It is more convenient to consider the product (,s(')/P/~) instead of s(l) itself while 
discussing the results, because (s(l)/P'') remains finite in the limit T-t 0, whereas s(') 
becomes small as PZ. This smallness of s(') is an artifact of the asymptotic analysis, 
however, because the limit I ' + O  implies V+O, and in this limit the parameter 
e - (1,' V )  is no longer small. However, the ratio I'e remains finite in this limit since it 
is independent of the velocity, and so the first correction to the growth rate scaled by 
(re)'/ '  remains finite. Moreover, ( . S (~ ) /P /~ )  is independent of the fluid velocity, whereas 
s(') itself depends on the fluid velocity owing to the dependence of e on V, and so 
( d l ) / P Z )  is a better measure of the absolute growth rate of the fluctuations. For the 
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FIGURE 5. The real part of (P/fl'z), as a function of k for H = 2 and r = 0. 0, First harmonic; 
a, second harmonic; 0, third harmonic. 
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FIGURE 6. Effect of variation in r on the real part of (P/f l I 2 )  of (a) upstream travelling waves w > 0 
and ( b )  downstream travelling waves w < 0, for the first harmonic for H = 2 .  0, f = 0; A, r = 2;  
0, f = 5 ;  0, f = 10. 

same reasons, it will also be convenient to plot (d2)/I-) rather than the second 
correction to the growth rate s(') itself later in the analysis. 

The variation in the real part of s(') in the absence of fluid flow for the first three 
harmonics is shown in figure 5.  It can be seen that s(') is always negative, indicating that 
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FIGURE 7. Locus of points in r, k space where dl) = 0 for (a) H = 2, (b) H = 1.1 and c )  H = 10. 
0, First harmonic; A, second harmonic; 0, third harmonic; 0, fourth harmonic. 

the waves are stable. It is interesting to note that for the first harmonic, dl) increases 
cc k3" for k 9 1, while for the higher harmonics dl) decreases proportional to k3I2 in 
the same limit. This difference in behaviour will be briefly discussed at the end of the 
next section. 

The effect of fluid flow tends to increase the magnitude of dl) for the upstream 
travelling waves (w > 0), as shown in figure 6(a), thereby stabilizing the perturbations. 
An increase in the fluid velocity has the opposite effect for the downstream travelling 
waves (o < 0) ,  as shown in figure 6(b). In addition, we see that dl) decreases to zero 
for specific values of r = 4 and k = k,, indicating that perturbations are neutrally 
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FIGURE 8. The real parts of (a) ( s r ) / T )  and (b) ($)/r) along the points in r, k space where s(l) = 0 

for H = 2. 0, First harmonic; A, second harmonic; 0, third harmonic; 0, fourth harmonic. 

stable at this level of approximation as well. The locus of the points (c,k,) where 
dl) = 0 is shown for the first four harmonics in figure 7(a)  for H = 2. This feature is 
observed even at other values of H ,  as shown in figure 7(b) for H = 1.1 and figure 7 (c )  
for H = 10. The present calculations also reveal that at the critical points (c, kc),  the 
velocity in the wall layer v",, is identically zero. The physical reason for the presence 
of parameter values with dl) = 0 and v",, = 0 will be discussed in detail in the energy 
balance analysis. The higher-order upstream modes up to the fourth order were also 
studied and it was found that the fluid flow has a stabilizing effect on these 
perturbations. For these modes, there were no parameter values where the first 
correction to the growth rate dl) decreased to zero. 

In the neighbourhood of the points (c, k,), s(') decreases proportional to (k - k,)2. 
Therefore, in a region of width about the points (4, k,) the decay rate of the 
fluctuations is determined by the second correction P). The procedure for calculating 
this is similar to that for dl), but it is necessary to include the viscous stresses in the 
outer flow and the wall material. In addition, the calculation can be greatly simplified 
by setting the wall layer amplitude equal to zero while determining d2), the error due 
to this approximation is O(F ' /~ ) .  The O(E) growth rate d2) is now dependent on v,., since 
the dissipation in the wall material is included, and has the form s(') = sy)  + vr @. The 
values of the real parts of ($)/T) and ($)/T) are shown as a function of k for the first 
four harmonics in figures 8(a) and 8(b) for the parameter values where s(') = 0. The 
qualitative behaviour of d2) is similar for other values of H .  The real parts of ~(12)  and 
si2) are negative, indicating that the O(s) correction to the growth rate has a small 
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stabilizing effect on the fluctuations. In figure 8(a),  the reason for difference in the 
qualitative behaviour of sy )  for the first and higher harmonics in the limit k 9 1 is 
similar to the reason for the behaviour of s(') in this limit. In figure 8 (b), the decay rate 
due to the dissipation in the viscoelastic medium, sp), shows a monotonic increase, and 
diverges proportional to k2 for large k .  In addition, it can be seen that sy )  and ~ ( 2 2 )  
increase as the frequency of the harmonics increases, except for the decrease in s y )  from 
the first to second harmonic at large k mentioned above. 

It is of interest to examine the variation in the minimum of d2) with H, since this 
represents the slowest decay rate of the fluctuations. The minimum value of d2) would, 
in general, depend on rr because sr) decreases and sf) increases in the limit k 9 1 for 
the second and higher harmonics. However, for qr - 0(1), we would expect the 
minimum value of d2) to coincide with the minimum value of 362) owing to the sharp 
increase in sp) at large k .  The minimum values of ( s y ) / T )  and (.$)/I-') for the lowest 
harmonic are shown as a function of H in figures 9(a)  and 9(b). This figure shows that 
~(12 )  and sc) increase proportional to ( H -  1)-2 for ( H -  1) 4 1, and show a sharp 
decrease proportional to W4 for H 9 1. 

To symmarize, the salient conclusions at this point are the following. 
(i) The leading-order growth rate do) is imaginary, so the waves are neutrally stable 

in the leading approximation. 
(ii) The first correction s(l) is negative for upstream travelling waves, but s(') can 

attain the value of zero for downstream travelling waves at specific critical values 
(C> kJ.  
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(iii) At these critical points, the second correction to the growth rate, P), could 
stabilize or destabilize the waves. The present calculations show that there are two 
contributions to d2) - one due to the viscosity in the fluid and the other due to the wall 
viscosity. Both of these turn out to have a stabilizing effect on the fluctuations. 
The physical reason for this type of behaviour will be discussed in the next section. 

Finally, it is important to note that in the above analysis, we have considered the 
ratio of solid and fluid viscosities 7, - O( 1). For some solids, this ratio could be large, 
and the dissipation due to the solid viscosity will be of the same magnitude as the 
dissipation in the fluid for vr - O(ecli2). For these solids, the additional contribution 
to dl) due to the solid damping is given by 7, c-liZsr), where sf) is calculated as shown 
above, and given in figure 9(b). In this case, the O ( E ~ ' ~ )  correction to the growth rate 
itself is negative, and there will not be any parameter values where the fluctuations are 
neutrally stable. 

3. Energy balance calculation 
The analysis of the previous section has shown that the qualitative behaviour of the 

decay of fluctuations is different from that reported previously in literature for the flow 
in a rigid tube. In particular, the decay rate of the fluctuations is O(eliZ) smaller than 
the leading-order frequency, except along certain lines in the r, k parameter space 
where the decay is O(E) smaller than the leading-order frequency. In addition, the 
behaviour of the first correction to the growth rate, dl), for the first harmonic is 
qualitatively different from that for higher harmonics. In the present section, an energy 
balance analysis is used to examine the reasons for this unusual behaviour. 

The total energy balance for the fluctuations in the fluid and the viscoelastic medium 
can be written in the following simple form (Chandrasekhar 1981): 

a,a = V+Y- -9 ,  (3.1) 
where 6 is the total energy of the fluctuations, V is the rate of increase of energy due 
to the convective terms in the momentum conservation equation, 9' is the rate of 
increase of energy due to the deformation work done by the stresses at the bounding 
surfaces of the fluid and the solid and 9 is the rate of dissipation of energy. It is 
important to note that & in (3.1) refers to the sum of the fluctuation energies in the solid 
and fluid, and we do not write separate equations for the solid and fluid phases. The 
total energy is the sum of the kinetic energy of motion of the fluid and the wall and the 
elastic strain energy : 

& = - dx rdr($+u:) 
2 ' S  ia 
+ fix 1; r dr[(a, u,)' + (2% uJ2 + :(a, u, + a, u , ) ~ ]  2 

= ( 2 7 ~ ) ~ '  exp [(s + s*) t ]  dk&(k). (3.2) J 
Here, the energy € has been non-dimensionalized by GR3, and the energy spectrum, 
€(k ) ,  represents the energy in fluctuations with wavenumber k .  From the above 
equation, the rate of change of energy is proportional to the real part of the growth 
rate. An asymptotic expansion is used for the rate of change of energy: 

a, 6 ( k )  = 2Re(s(")) 8c0)(k) + 2e1'2Re(s(1)) €(l)(k), (3.3) 
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where Z t  G(k )  has been non-dimensionalized by (G3R6/p)1/2,  and € ( O )  and € ( l )  have been 
scaled by ( G P ) .  

The rate of dissipation of energy in the fluid (Chandrasekhar 1981) is 

9 = j d x  1; r dr[4(ar vJ2 +4(a, u , ) ~  + 2(d, 0, +a, u , ) ~ ] .  

9 = Tq, s d x  ir r dr[4(a, u , ) ~  + 4(a, u , ) ~  + 2(a, v, + 2T u , ) ~ ] .  

(3.4) 

The factor r e  is present in the above equation because the dissipation rate is 
proportional to the viscosity 7. The dissipation in the solid is given by 

(3.5) 

It is useful to estimate the magnitudes of the dissipation rates in the fluid and the solid. 
In the outer flow, the length scale of the fluctuations is O(R), while the velocity scales 
as (G/p)li2ti, where ti is the dimensionless amplitude of perturbations. Using these, it 
can be seen that the rate of dissipation scales as (GvR/p )C2  = r4G3R4/p)1'2ti2.  A 
similar argument can be used to show that in the solid, the rate of dissipation scales as 
Ter/r(G3RR4/p)1'2ti2. In the viscous wall layer in the fluid, however, the length scale for 
the variation of the velocity scales as e1'2R, and it can be easily verified from (3.4) that 
the rate of dissipation of energy is O(T€'i2(G3R4/p)112ti2). From this order of magnitude 
analysis, it can be seen that the leading contribution to the dissipation rate is 
identically zero, and the O(eli2) correction W) is due to the dissipation in the viscous 
wall layer 

(s(0))1/2(8(0) * ) l i 2  

W ( k )  = 2 r  dy(ay ti,, dY 6&) = 2 P 2 A i  A: (s(0))l/2 + ( s (0 )* ) l /2 .  (3.6) lox 
In the above expression, r = 1 -el/*y and the upper limit y = € - ' I 2  has been 

approximated by y = co. The dissipation in the outer flow in the fluid and the wall 
material only contributes to the O(e) correction to the dissipation rate which is not 
considered here. 

The contribution to the rate of change of energy due to the Reynolds stresses, %', is 
(Chandrasekhar 1981) 

r drv, v, Z r  = (2n)-I dk exp [2(s + s*) t] %?(k), (3.7) i 
where the spectrum of the convective transport, V(k) ,  is 

r d r (2r r )  (6, ti,* + 6: 6,). 

The convective transport is restricted to the velocity fluctuations in the fluid, since the 
mean velocity in the solid is zero. It can be easily verified that the convective transport 
W'))(k)  due to the leading-order velocity field ?Yo) is zero, because the product 6%) fib",' is 
imaginary from (2.2 1) and (2.22). Similarly, the O ( F " ~ )  contribution to the convective 
transport is zero because 6%) = 0 and ti:; = 0 (see (2.25)). However, there is a 
contribution to WC1) due to the flow in the wall layer 

In deriving the second expression, (2.30) has been used for ti,,, and ti$) is assumed to 
be a constant over a distance O(el/') where 62L', is non-zero; the error due to this 
approximation is 0(e1/*)  smaller than the terms retained. 
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The deformation work done by the stresses at the bounding surfaces of the fluid and 
the wall, 9, is (Chandrasekhar 1981) 

9 = dS,vijvj, (3.10) 

where dS, is an area element of the bounding surface directed along the outward 
normal to the surface. The work done on the wall material at r = H i s  zero because the 
normal and tangential velocities are zero at this surface. At the interface r = 1, the 
work done on the fluid is given by 

s 

while the work done on the wall material is 

(3.12) 

There is a negative sign in the above equation because the outward normal is directed 
along the -r-direction. The total work done at the surface is the sum of (3.1 1) and 
(3.12). Since the normal velocity and stress are continuous across the interface, the net 
work done by the normal stresses in (3.11) and (3.12) cancel. Physically, this implies 
that there is a transfer of energy between the fluctuations in the fluid and wall due to 
the normal stresses, but there is no net transport of energy from the mean flow. The 
shear stress is also continuous at the interface, but there is a discontinuity in the 
tangential velocity, which is proportional to (2rur) (see (2.16)). The net work done by 
the shear stresses at the interface is 

Y = d~7,.(~, - a, u,) = (27r-I exp [(s + s*) t] dkY(k), (3.13) 

where the spectrum of the deformation work Y ( k )  is obtained by inserting (2.9) into 
(3.13) : 

Y ( k )  = [2r(?,,. zl: + ?;? zl,)]. (3.14) 

Here, (2.16) has been used for the discontinuity in the velocity across the surface. 
Inserting (3.32) for the leading-order shear stress at the surface fWSr, the final 
expression for the leading-order work done due to the surface stresses is 

s s 

,4p(k) = 2~112~3/2[(S(o))1/2~W~ A?)* + (s(o)* ) u 2 - *  ~ w x u r  "(0) IL=1 

(3.15) 

where the normal velocity condition (2.38) was used to obtain the second expression. 
From (3.15), it can be seen that 9') = 0, and 

(3.16) 

The above calculations indicate that @ O ) ,  and 9") are all identically zero, and 
from (3.3) it can be inferred that the real part of s(") is zero. This is in agreement with 
the results of the linear stability analysis of the previous section. In addition, a 
comparison of (3.9) and (3.16) shows that Y ( ' ) ( k ) + P ( k )  = 0, i.e. the rate of 
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transport of energy due to the deformation work at the surface is exactly the negative 
of the rate of transport of energy in the wall layer due to the Reynolds stresses. This 
general feature of the wall layer flow near a flexible surface, which does not appear to 
have been noticed before, is just a consequence of the continuity of velocity and stress 
conditions at the surface. In the absence of any net energy transport, the dissipation 
9(l) in the wall layer causes the damping of the fluctuations, and therefore s(l) is always 
negative. However, it was found in the previous section that s(') = 0 at certain points 
in the r, k parameter space. This is because the amplitude of the wall layer velocity 8,, 
becomes zero at these points, and the tangential velocity boundary condition is 
identically satisfied by the outer flow. At these points the decay rate of the 
perturbations, which is O(c) smaller than the frequency, is determined by the relative 
magnitudes of the dissipation rate in the outer flow and wall material, and the 
deformation work done by the outer flow shear stresses at the interface. 

We end this section with a brief discussion of the behaviour of s(') in the limit k 9 1 
(figure 5). The decay of the fluctuations is due to the dissipation in the wall layer in the 
fluid, and not due to the dissipation in the bulk of the fluid or wall material. If the 
normal velocity fluctuation at the surface scales as 6, then the normal displacement at 
the surface is O ( ~ / S ( ~ ) ) .  However, the incompressibility condition (2.13) stipulates that 
a,u", N ku",, and therefore the displacement field in the bulk of the wall material is 
O(kv"/s(O)), which is O(6) since do) cc k for k 9 1. The elastic energy then scales as k2fi2, 
which is of the same magnitude as the kinetic energy of the wall motion. The kinetic 
energy in the fluid scales as k-lfi2, which is O(k-l) smaller than what one might expect 
from a naive scaling argument because the penetration depth of the fluctuations in the 
fluid at large k is O(k-'). The rate of dissipation of energy in the wall layer increases 
proportional to from (3.6), and therefore the decay rate for the second and 
higher harmonics decreases proportional to k-3/2 for k >> 1. 

The decay rate for the first harmonic has a different trend for the following reason. 
Detailed calculations indicate that the eigenvalue y in (2.33) and (2.34) is real for the 
first harmonic, and the strain field in the wall material is confined to a region of 
thickness O(k-') at the surface. Moreover, the amplitude of the displacement field in 
this region is O(O/s(O)), and consequently the strain energy decreases cc k-'C2 for k 9 1 .  
The kinetic energy in the fluid and the wall exhibit a similar trend, and therefore the 
first correction to the growth rate increases proportional to k3/' for k 9 1 .  Therefore, 
the difference in the behaviour of the first and the higher harmonics is caused by the 
difference in the qualitative nature of the strain field in the wall. A similar trend is also 
observed for the second correction to the growth rate sf?) (figure 8a), which is a 
consequence of the dissipation in the outer flow. The contribution sf) due to the 
dissipation in the wall material (figure 8 b)  shows the expected increase proportional 
to k2. 

4. Conclusions 
The stability of the high Reynolds number flow in a tube with flexible walls was 

analysed in this paper. The present system is qualitatively different from the flow in a 
tube with rigid walls at high Reynolds number. An inviscid Hagen-Poiseuille flow in a 
tube with rigid walls does not have any unstable or neutrally stable solutions because 
there are no points of inflexion in the flow as required by the Rayleigh theorem. In fact, 
a stronger statement can be made that the temporal stability problem for an inviscid 
flow in a rigid tube does not have any solutions. Further, there are no solutions at high 
Reynolds number that involve an inner critical layer, as in the case of the flow in a two- 



136 V. Kumaran 

dimensional channel. The flow in a flexible tube is not constrained by the Rayleigh 
theorem because a normal velocity is permitted at the wall. Therefore, an inviscid flow 
in the present configuration does have non-trivial solutions, and an asymptotic analysis 
about the inviscid flow was used in the present study. The growth rate of the 
fluctuations was determined using a linear stability calculation, and an energy balance 
analysis was employed to obtain some physical insight into the energy transport 
processes in the system. 

The system consisted of a tube of radius R surrounded by a viscoelastic medium in 
the annular region R < r < HR.  The fluid was considered to be an incompressible 
Newtonian fluid, while the wall was modelled as an incompressible viscoelastic medium 
in which the stress has an elastic component proportional to the strain and a viscous 
component proportional to the strain rate. The dynamics of the system is influenced by 
four dimensionless parameters - the Reynolds number Re = (pVR/q),  the ratio of radii 
H ,  the ratio of the viscosities of the wall material and fluid yr = ( q 8 / q )  and the 
dimensionless velocity r = (pV2/G)”’. In the high Reynolds number limit, an 
asymptotic expansion in the small parameter e = ( 1  /Re)  was used. 

In the leading approximation, the flow is inviscid, and it is observed that the leading- 
order growth rate do) is imaginary, indicating that the perturbations are neutrally 
stable at this level of approximation. This is because there is neither viscous dissipation 
of energy nor any transport of energy from the mean flow to the fluctuations due to 
Reynolds stress. There are multiple solutions for the leading-order frequency, and it is 
found that an increase in the fluid velocity tends to increase the frequency of the 
downstream travelling waves and decrease the frequency of the upstream travelling 
waves. 

The viscous stresses are O ( P )  smaller than the inertial stresses in the fluid in a wall 
layer of thickness O(elizR) at the interface. As a consequence of the wall layer, there 
is an O ( P )  correction s(’) to the leading-order frequency. This correction does not 
depend on the viscosity of the wall material because the damping is due to the energy 
dissipation in the wall layer and not in the bulk of the fluid or the wall. In the wall layer, 
it was found that the transfer of energy from the mean flow to the fluctuations due to 
the Reynolds stress is cancelled by the opposite transfer of equal magnitude due to the 
deformation work done by the shear stress, resulting in no net transport of energy to 
the velocity fluctuations. This is a general result for the flow in a wall layer near a 
flexible surface, which does not appear to have been reported earlier. As a result, the 
dissipation in the wall layer has a stabilizing effect on the fluctuations, and the real part 
of the O(e1l2) correction to the growth rate dl) is negative. An increase in the fluid 
velocity tends to stabilize the upstream travelling waves, and destabilize the 
downstream travelling waves. 

There are certain parameter values (&, k,) where it is found that s(’) = 0 for the 
downstream travelling waves. This is a rather interesting feature which does not seem 
to have been observed in previous studies. Physically, this feature occurs because the 
amplitude of the wall layer velocity becomes zero at these points, and the tangential 
velocity boundary condition is identically satisfied by the inviscid flow. At these points, 
the stability is determined by the O(E) correction to the growth rate d’). It was found 
that d2) does depend on qr because the viscous effects in the bulk of the fluid and the 
wall are important at this level of approximation. The real part of s(’) was found to be 
negative along the curves (&,kc) where dl) = 0, indicating the presence of a small 
stabilizing effect. The variation of the minimum of d2) as a function of H was examined, 
and it was found that the minimum value increases proportional to ( H -  1)-2 for 
( H -  1) 6 1, and decreases proportional to H-4 for H 9 1. 
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The oscillations in the present system correspond most closely to the Class B waves 
in the classification of Benjamin (1963). These are waves which involve a conservative 
exchange of energy between the fluid and the solid, and the energy dissipation in the 
fluid or solid tends to dampen the fluctuations. They also exhibit another distinctive 
feature of Class B waves - the ability to propagate even in the absence of a fluid. The 
present analysis has not revealed any Class A type waves, which are destabilized by 
dissipation in the solid. In addition, we have also not observed any Class C 
(Kelvin-Helmholtz) type waves. In the classification scheme of Carpenter & Garrad, 
these could be included in the flow-induced surface wave category, which could exist 
even in the absence of fluid viscosity. 

It is useful to compare the present results with those of the high Reynolds number 
asymptotic analysis in a rigid tube. In a rigid tube, no-slip conditions are enforced at  
the wall and there are no non-trivial solutions of the inviscid equations of motion. 
There are, however, solutions of the complete Navier-Stokes equations where the 
vorticity is important in a thin region near the centre of the tube or the wall. A complete 
discussion of these modes is given in Davey & Drazin (1969) and Drazin & Reid (198 1). 
There are two types of viscous modes at high Reynolds number: 

(i) the 'centre modes', where the vorticity is important in a region of thickness 
(kRe)-'14 near the centre of the tube: the damping rate of these modes is proportional 
to (kRe)-li2 when scaled by (V/R) ,  but the leading-order wave speed is 1 when scaled 
by the mean velocity, indicating that the perturbations are travelling at the same 
velocity as the fluid; 

(ii) the 'wall modes' where the vorticity is confined to a region of thickness (kRe)-'13 
near the wall: both the frequency and the damping rate of these modes is proportional 
to (kRe)-'13. 

It might be expected that the damping rate for the centre modes in a flexible tube will 
be the same as that for a rigid tube in the leading-order approximation. This is because 
the vorticity is confined to a region small compared to the radius of the tube, and is 
insensitive to the boundary condition applied at the wall. However, it can be shown 
that the leading-order damping rate for the wall modes is also unaffected by the 
flexibility of the wall, because the boundary condition at the wall is identical to the no- 
slip condition for a rigid tube in the leading approximation. If the fluctuation in the 
velocity at the wall is O(u), the shear stress scales as (Re1137p/R) since the thickness of 
the wall layer is O(Re-'13R). This is balanced by the elastic stress in the wall material, 
which is O(Gu/R) where u is the magnitude of the displacement. A balance between 
these two stresses indicates that u - Re113(7u/G). The magnitude of the velocity of the 
wall material at the surface, &ui ,  scales as (Re-lPu),  because the frequency of the 
oscillations is O(Re-1/3V/R) for the wall modes. For the present regime where Re + 1 
and r - 1, this is equivalent to a no-slip condition in the leading approximation, and 
consequently the leading-order damping rate for the wall modes is the same as that for 
a rigid wall. 

The damping rates of the inviscid modes in the present analysis is O(Re-liz) lower 
than the leading-order frequency for I' - 1. This is lower than the O(Re-l13) damping 
rate for the wall modes, and is of the same magnitude as the O(ReCIi2) damping rates 
for the centre modes. However, we find certain parameter values where the damping 
rate is O(Re-') lower than the leading-order frequency, which is lower than even the 
damping rate of the centre modes, and these inviscid modes are the least-damped 
modes in the flow through a flexible tube. The small damping rates of these fluctuations 
is due to the presence of a resonance-like mechanism at these parameter values, where 
the tangential velocity boundary condition is identically satisfied by the inviscid 
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solution. In this case, there is no boundary layer near the wall, and the damping due 
to the viscous dissipation in the bulk of the flow is O(Re-l). This mechanism is 
facilitated by the flexibility of the wall, which acts as a destabilizing mechanism in this 
case. 

Though no instabilities were observed in the present analysis, the presence of slowly 
decaying modes with decay rate O( 1 /Re) smaller than the leading-order frequency were 
detected for certain parameter values. Further, it was found that the minimum decay 
rate decreases proportional to H - 4  when the ratio of radii H becomes large. The 
presence of these slowly decaying fluctuations could have a significant effect on the 
transport processes in these flows. Further, this could be important in biological flows 
which are driven by an oscillating pressure drop. The earlier analysis of the viscous flow 
through a flexible tube (Kumaran 1995) revealed the presence of instabilities when the 
velocity is increased beyond a critical value. Though the two studies are not directly 
comparable, because that analysis considered the regime (7 V/GR) - O( 1) while the 
present one assumes ( P V ~ / G ) ’ / ~  - O(l), it is still surprising that an increase in the 
Reynolds number appears to have a stabilizing effect. The instability at low Reynolds 
number is due to the transport of energy from the mean flow to the fluctuations due 
to the deformation work done by the mean flow at the interface. At high Reynolds 
number, the transfer of energy due to the deformation work is cancelled by an opposite 
transfer of energy due to Reynolds stresses in the wall layer, and there is no net transfer 
of energy from the mean flow to the fluctuations. This fortuitous cancellation of the 
energy transfer terms gives rise to the paradoxical result that the flow at low Reynolds 
number could become unstable, while the flow in the limit of high Reynolds number 
is stable. 
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